Al-2020 Fortieth SGAI International Conference on Artificial Intelligence December 8-9 and 15-17, 2020

Technical Keynote Lecture:

Multi-Task Deep Learning Prof. Giuseppe Di Fatta

Department of Computer Science University of Reading G.DiFatta@reading.ac.uk

December 15, 2020

Acknowledgments

- Prof. Giuseppe Nicosia, University of Catania and University of Cambridge
- Deyan Dyankov, MSc graduate, University of Reading, and UBS, London
- Salvatore Danilo Riccio, PhD student, Queen Mary University of London
- Giorgio Jansen, University of Cambridge

Overview

- Stein's Paradox in Statistics
- Overview of Transfer Learning
 - Approaches and challenges
- Multi-Task Deep Learning
- Multi-Task/Multi-Objective Optimisation in Deep Neuroevolution
- Conclusions

Stein's Paradox in Statistics

- The best estimation of unobserved quantities is their observed averages.
 - The mean minimises the squared error over the samples.
 - The sample mean may differ from the population mean, but cannot do any better from a sample set of a single variable.
- There is a better estimator than sample average when estimating **multiple independent** Gaussian random variables:
 - Arguably the first form of multi-task learning

Charles Stein, "Inadmissibility of the usual estimator for the mean of a multivariate normal distribution", TR, Stanford University, 1956

Stein's Paradox: Example

- Baseball players' performance
 - Hit: the batter strikes the ball and safely reaches or passes the first base

Batting average = $\frac{\text{hits}}{\text{bat times}}$

- <u>unobserved quantity</u>: true batting performance in a season
- <u>observed quantity</u>: batting average in the first N bat times
- Willie Mays' 3000th hit, July 18, 1970

 <u>Paradox</u>: the best estimator for each player's expected performance is NOT their individual observed batting average.

1970 Major-League Baseball Players

6

Giuseppe Di Fatta

Source: Bradley Efron and Carl Morris, "Stein's Paradox in Statistics", 1977

The Shrinking Factor

- The shrinking factor in James-Stein estimator is a form of multi-task regularisation for averages.
- For a number k (k>3) of independent variables (players):

Source: Bradley Efron and Carl Morris, "Stein's Paradox in Statistics", 1977

Single-Task Learning

• many binary classifiers

Task k

Р

U

Multi-Task Learning (MTL)

• a single shared model

Multi-Task Learning (MTL)

- In MTL, tasks are trained in parallel using a shared representation.
- An inductive transfer mechanism improves generalization performance by leveraging domain information from related tasks.
- The training data for many tasks work as an <u>inductive bias</u>: learning all tasks concurrently helps each task to be learned better and reduces the risk of overfitting on any of them.

"MTL is a collection of ideas, techniques, and algorithms, not one algorithm." *Rich Caruana, "Multitask Learning", Machine Learning, 1997*

MTL Example: Multinominal Classification

- Different class labels as multiple tasks
- Object recognition from images: cat, dog, rabbit, etc.
- CNN layers: from generic features to specific ones
- Dense layers for classification

11

Example: Medis Pneumonia Data

• Predict mortality risk for hospitalisation

STL on Medis Pneumonia Data

• Predict mortality risk for hospitalisation [Caruana, 1997]

Rich Caruana, "Multitask Learning", Machine Learning, 1997

MTL on Medis Pneumonia Data

• Predict mortality risk for hospitalisation [Caruana, 1997]

Rich Caruana, "Multitask Learning", Machine Learning, 1997

MTL Internal Mechanisms

• Data amplification for learning shared features

- Limited data and noisy data for some task: multiple tasks contribute to increase the overall sample size.
- Aggregated data help by averaging the noise in individual datasets.

<u>Eavesdropping</u>

 When noise in one task T' is too high to learn a particular feature, other tasks help generating the feature that may be useful also in T'.

<u>Representation bias</u>

 MTL drives the stochastic search towards a better (more general) solution avoiding local minima on individual tasks.

<u>Unsupervised discovery of task relatedness</u>

- Task relatedness can be discovered by the learning process, effectively performing an implicit unsupervised process within the main supervised process.
- Backpropagation using shared layers can exploit the way multiple tasks are related without being given explicit information about task relatedness.

Transfer Learning Approaches

Sequential Transfer Learning

- Tasks are learned sequentially
- The final model works well for the target task

<u>Multi-Task Transfer Learning</u>

- A single model for 2 or more target tasks is learned concurrently
- The final model works well for all the tasks

<u>Multiform Transfer Learning</u>

- It refers to a form of multi-task transfer learning in which multiple formulations of a single task are learned: task engineering.
- Transforming a single-objective optimization problem into a multi-objective optimization problem can help to remove local optima.

A. Gupta, Y. Ong and L. Feng, Insights on Transfer Optimization: Because Experience is the Best Teacher," IEEE Transactions on Emerging Topics in Computational Intelligence, 2018.

Sequential Transfer Learning: Feature Extraction

Sequential Transfer Learning: Fine Tuning

Pre-Trained Models: Examples

- Pre-trained models for Computer Vision:
 VGG-16, VGG-19, Inception V3, XCeption, ResNet-50, etc.
- Word embedding pre-trained models for NLP tasks:
 Word2Vec, GloVe, FastText
- Other models for NLP that can be used for transfer learning:
 - Universal Sentence Encoder (Google)
 - Bidirectional Encoder Representations from Transformers (BERT, Google)

MTL Soft Regularisation

MTL Hard Regularisation

Backprop

MTL Challenges

- Feature transferability and task relatedness
 - Which features should be shared/transferred?
 - Issues: <u>negative-transfer</u> in feature layers and <u>under-transfer</u> in classifier layers
 - How to measure task similarity?
 - How to embed known task relations?
 - What if prior knowledge on task relations is not available? Can MTL still be employed to learn **unknown or unexpected** task relations?

Feature Transferability

- Transferability is negatively affected by two issues:
 - optimization difficulties in splitting networks between co-adapted neurons
 - the specialization of higher layer neurons to their original task at the expense of performance on the target task
- Experiments [*Yosinski, 2014*] on a network trained on ImageNet: features transferred from the bottom, middle, or top of the network
 - The transferability of features decreases when the base task and target task are less similar.
 - Nevertheless, transferring features even from relatively dissimilar tasks can be better than using random features.
 - Transferring features from almost any number of layers can produce a boost to generalization that lingers <u>even after fine-tuning</u>.

Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural networks? Advances in Neural Information Processing Systems 27 (NIPS '14), NIPS Foundation, 2014.

Task Relatedness

- MTL is expected to work if tasks are related and share some common features.
 - How can we determined if tasks are sufficiently related?
 - In multi-label classification this may not always be the case.
- Task similarity (metrics) to quantify the relatedness of tasks
 - Assuming explicit similarity matrix (e.g., S. Feldman, M. R. Gupta, and B. A. Frigyik, "Multi-Task Averaging", NIPS 2012) to describes the relatedness of any pair of tasks.
- Explicit prior structure of task groupings
 - Explicit hierarchical task relatedness, with prior knowledge or with some explicit structure in learning relations
- No prior knowledge of task relatedness
 - implicit hierarchical task relatedness, no prior knowledge of learning relations
 - learning the task relations

Tasks Structure

- How to incorporate the tasks structure in the learning problem?
 - A custom model and/or a custom Loss function. In general, a combination of the loss functions from multiple heads. E.g., Multilinear Relationship Networks:

(M. Long, Z. Cao, J. Wang, P. S. Yu, Learning Multiple Tasks with Multilinear Relationship Networks, NIPS 2017)

- A linear combination $\sum_{i} \alpha_i \mathcal{L}_i$ with weights α_i : more hyperparameters!
- A meta-learning problem: a general regularization framework to learn multiple tasks as well as their structure.
 - E.g., "Convex Learning of Multiple Tasks and their Structure" (Ciliberto 2015)

Giuseppe Di Fatta

Top-Down Layer-wise Model Widening

- An automated procedure to progressively learn the grouping of tasks (clustering) in the model structure
 - each branch is associated with a sub-set of tasks.

Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, R. Feris, Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification, IEEE CVPR 2017.

Combining Loss Functions

Image style transfer task

- Training from a distribution of loss functions
- Testing with a conditional coefficient

Source: https://ai.googleblog.com

- Alexey Dosovitskiy, Josip Djolonga, You only train once: loss-conditional training of deep networks, ICLR 2020
- Mohammad Babaeizadeh and Golnaz Ghiasi, Adjustable Real-Time Style Transfer, ICLR 2020

Combining Loss Functions

Adjustable style transfer

• All stylizations are generated with a single network by varying the conditioning values.

Source: https://ai.googleblog.com

- Alexey Dosovitskiy, Josip Djolonga, You only train once: loss-conditional training of deep networks, ICLR 2020
- Mohammad Babaeizadeh and Golnaz Ghiasi, Adjustable Real-Time Style Transfer, ICLR 2020

Multi-Task/Multi-Objective Optimisation

- MTL is intrinsically a multi-objective problem
 - different task objectives may be consistent or may conflict with each other
 - minimisation of a single objective function as linear combination
 - trade-off of many objective functions
- Optimisation approaches
 - Using prior knowledge, then **Bayesian optimisation** methods can be applied:
 - knowledge transfer/sharing for a faster automatic hyperparameter optimization in ML
 - · can improve the efficiency of training and the generalization capability of models
 - No prior knowledge: Evolutionary approaches for a unified search space for all tasks.
 - modes of knowledge transfer include shared genetic makeup, direct genetic crossover, other methods w/o direct solution crossover.
 - Find a trade-off using Pareto Multi-Objective Optimisation
 - Pareto optimal solutions (Pareto front)

Pareto Multi-Task Deep Learning

- Population-based algorithms, such as Neuroevolution, can be naturally extended to multi-task learning.
 - Use ES to concurrently optimise many tasks and many objectives with a single DNN model.
- Multi-Task Multi-Objective Deep Neuroevolution with a Pareto optimisation approach
 - Tasks selected from related Atari 2600 games
 - Prior knowledge used to define multiple utility functions
 - Analysis of the underlying training dynamics with standard techniques and with the Hypervolume indicator and the Kullback-Leibler divergence

Results: a single model trained on multiple games outperforms models trained on individual games.

S. D. Riccio, D. Dyankov, G. Jansen, G. Di Fatta, and G. Nicosia, Pareto Multi-Task Deep Learning, ICANN 2020. *Giuseppe Di Fatta*

Deep Neuroevolution

- Approximated loss gradient for backpropagation
 - It can compete against gradient-descent deep learning algorithms in terms of performance in difficult reinforcement learning problems
- Offspring are generated from a gaussian distribution centered at the best parent from the previous generation.
 - mirrored sampling: evaluating the mirrored offspring allows to estimate the gradient without differentiation.

$$\theta_P(k+1) = g(\theta_P(k), \nabla_{\theta} f(\theta(k))), \ \theta(k) \in \Theta_k$$

 $\theta_{P}(k+1)$: parent model parameters at generation k+1 P: parent

- f: distribution for the offspring sampling
- g: optimiser
- ∇_{θ} : estimated gradient

Multi-Task Multi-Objective Evolutionary Strategy (MTMO-ES)

- Assuming a general association between a task (utility, goal) and multiple objectives (features): m tasks associated to n objectives.
- We can reformulate the Deep Neuroevolution approach to the multi-task multi-objective case with the MTMO-ES gradient:
 - a weighted sum of the gradients associated to the objectives.

Matrix (m tasks x n objectives):

 δ_{ij} : association matrix (binary values) between tasks (i) and features (j)

task	f ₁	f ₂	f ₃		f _n
t ₁	1	1	0		0
t ₂	0	0	1		0
t _m	0	0	0		1
Σ	1	1	1	1	1

$$\theta_P(k+1) = g\left(\theta_P(k), \sum_{i=1}^n \alpha_i \nabla_\theta f_i(\theta(k))\right), \ \theta(k) \in \Theta_k$$
$$\sum_{i=1}^n |\alpha_i| = 1, \ \alpha_i \in \mathbb{R} \ \forall i$$
$$\sum_{i=1}^n |\alpha_i| \delta_{ij} = \frac{1}{t}, \ \forall j \in \{1, \dots, t\}$$

Playing Atari Games with Deep Learning

MSc Student Project

The ANN (Deep Q-Network) learns a "policy" to play the game from video-only input. It has learned to avoid incoming fire and to move to shoot the lower-down aliens first.

This video was created from the policy being trained with 5.95M frames, which takes a few days using a high-end server with a powerful GFX card.

Matthew Uzzell MSc Advanced Computer Science, 2017-18 Department of Computer Science University of Reading

Experimental Analysis

- DL architecture:
 - input layer, three convolutional layers, a fully connected layer, a fully connected output layer (18 actions)
- Two games with similar dynamics: River Raid and Zaxxon

e 8000 2 6000 2 6000

600

500

700

800

(*) T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, OpenAI, "Evolution Strategies as a Scalable Alternative to

Reinforcement Learning", 2017.

300

400

Epoch

200

5000

4000

2000

1000

0

100

Training: Elite Scores

River Raid score

- Multi-task single-objective ES trained on both tasks and evaluated on each task.
 - Mean score: each model is evaluated over 200 episodes.
 - Elite mean scores, with minimum and maximum score per iteration.
 - The dashed lines are the results obtained by single task ES (*).

Training: Offspring Scores

- Multi-task single-objective ES trained on both tasks and evaluated on each task.
 - Mean score: each model is evaluated over 200 episodes.
 - 5000 offspring mean scores, with minimum and maximum score per iteration.
 - The dashed lines are the results obtained by single task ES (*).

Zaxxon score

(*) T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, OpenAI, "Evolution Strategies as a Scalable Alternative to Reinforcement Learning", 2017.

Giuseppe Di Fatta

Pareto Front and Hypervolume

• The **Pareto front** is the set of solutions θ ' not dominated by any other solution:

$$P(\Theta) = \{ \theta' \in \Theta \mid \nexists \theta \in \Theta : \theta \preceq \theta' \}$$

Pareto Front Hypervolume

- The Pareto front obtained with multi-task ES covers a larger area than the two single-task single-objective networks.
 - The new algorithm is finding strategies able to master both tasks at the same time.

Conclusions

- Sequential transfer learning more frequently used to transfer features from few established tasks with lots of data to many other applications with limited data.
 - becoming a key methodology for mainstream adoption of DL in industry with pre-trained models in computer vision and speech processing.
- The main idea of Multi-Task Learning (MTL) is exploiting the relations/structure among different tasks: less frequently adopted.
 - inherent difficulty to identify and group "related" problems systematically and our tendency to think in terms of "weak" AI
- MTL: a step forward in learning paradigms
 - single-task machine learning exploits **complex relations in the data**
 - MTL also exploits complex relations in the tasks
- Machine Learning has made huge progress in solving isolated problems: MTL is now inspiring research on more general deep learning architectures.