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Abstract. This study presents a case-based reasoning system that makes
use of general domain knowledge - referred to as a knowledge-intensive
CBR system. The system applies Bayesian analysis method aimed at in-
creasing the accuracy of similarity assessment. The idea is to employ the
Bayesian posterior distribution for each case symptom to modify the case
descriptions and the causal strengths of the ontology. To test the system,
two examples from two different application domains, i.e., a "food failure
domain" and a "drilling process domain" have been chosen. To evaluate
the results, a simplified version of the system is implemented, and the
same examples are tested with that system as well. The results from both
of the systems are compared with results from a human expert. The ob-
tained results reveal the capability of Bayesian analysis to increase the
accuracy of the similarity assessment.

Keywords: Bayesian Analysis, Case-Based Reasoning, Causal Expla-
nations, Knowledge Intensive System

1 Introduction
Knowledge-intensive case-based reasoning (CBR) enables cases to be matched
based on semantic rather than purely syntactic criteria. It captures and reuses
the human experiences for complex problem solving domains [1], and generates
targeted explanations for the user as well as for its own internal reasoning pro-
cess.

Although pure Case-based reasoning is an efficient method for complex do-
mains problem solving, it is not able to generate an explanation for the proposed
solution. Aamodt [2] combined CBR with a semantic network of multi-relational
domain knowledge which allows the matching process to compute the similarity
based on semantic rather than purely syntactic criteria, leading to capability
of explanation generation. A problem with that method is the lack of a for-
mal basis for the semantic network, which made the inference processes within
the network difficult to develop and less powerful than desired. The need for a
more formal treatment of uncertainty has led to some initial investigations into
how a Bayesian Network (BN) model could be incorporated [3], [4]. A Bayesian



framework includes an inference engine, builds probabilistic models without in-
troducing unrealistic assumptions of independencies, enables the conditioning
over any of the variables and supports any direction of reasoning [6], [7], [5].
Moreover, the nature of Bayesian reasoning enables the explanations generation
[5].

Been et al. [8] integrated BN and CBR to model the underlying root causes
and explanations with the aim of bridging the gap between the machine learning
methods and human decision-making strategy. They used case-based classifiers
and BN as two interpretable models to identify the most representative cases
and important features. Bruland et al. [9] studied reasoning under uncertainty.
They advocated the use of Bayesian networks to model aleatory uncertainty,
which works by assigning a probability to a particular state given a known dis-
tribution, and case-based reasoning to handle epistemic uncertainty, which refers
to cognitive mechanisms of processing knowledge. Houeland et al. [7] presented
an automatic reasoning architecture that employs meta reasoning to detect the
robustness and performance of systems, which combined case-based reasoning
and Bayesian network. Tran et al. [10] used a distributed CBR system to assist
operators in finding solutions for faults by determining the cases that share com-
mon symptoms. Aamodt et al. [3] focused on retrieval and reuse of past cases.
They proposed a BN-powered sub-model as a calculation method that works in
parallel with general domain knowledge. Kofod-Petersen et al. [4] investigated
weaknesses of Bayesian network in structural and parametric changes by adding
case based reasoning functionality to the Bayesian network. Lacave [5] reviewed
accomplished studies in Bayesian networks explanation and addressed the re-
maining challenges in this regard. Koton [11] presented a system called CASEY
in which the CBR and a probabilistic causal model are combined to retrieve a
qualified case. It takes advantage of the causal model, as a second attempt, after
trying a pure CBR to solve the problem.

Aamodt [2] presented a knowledge intensive system called TrollCreek which
is an implementation based on the Creek architecture for knowledge-intensive
case-based problem solving and learning targeted at addressing problems in open
and weak-theory domains. In TrollCreek, case-based reasoning is supported by a
model-based reasoning component that utilizes general domain knowledge. The
model of general knowledge constitutes a combined frame system and semantic
network where each node and each link in the network are explicitly defined in
their own frame object. Each node in the network corresponds to a concept in
the knowledge model, and each link corresponds to a relation between concepts.
A concept may be a general definitional, prototypical concept or a heuristic rule
and describes knowledge of domain objects as well as problem solving methods
and strategies. A frame represents a node in the network, i.e., a concept in the
knowledge model. Each concept is defined by its relations to other concepts rep-
resented by the set of slots in the concept’s frame definition. A case is also viewed
as a concept (a situation-specific concept), and hence it is a node in the network
linked into the rest of the network by its case features. The case retrieval process
in TrollCreek is a two-step process, in line with the two-step MAC- FAC model



[12], in which the first step is a computationally cheap, syntactic matching pro-
cess, and the second step is a knowledge-based inference process that attempts
to create correspondences between structured representations in the semantic
network. In the first step, cases are matched based on a weighed number of
identical features, while in the second step paths in the semantic network are
identified that represent relation sequences between unidentical features. Based
on a method for calculating the closeness between two features at the end of
such a sequence, the two features are given a local similarity score. Some of the
aforementioned research apply BN in different segments of CBR. The research
presented here has been inspired by TrollCreek and is partly based on it; how-
ever, it tries to improve the accuracy of retrieval by taking advantage of both
BN and CBR. BN-Creek provides a formal basis for causal inference in weak
theory domains. The main idea behind BN-Creek is to inject the Bayesian anal-
ysis into a semantic network (domain ontology) to assist the retrieve phase of a
knowledge-intensive CBR system. BN-Creek and TrollCreek conceptually work
on the same ontology and the difference between them stems from the relation
strengths, which in Trollcreek are static whereas in BN-Creek change dynami-
cally. This paper investigates the effects of Bayesian analysis within the Creek
architecture as a specific knowledge intensive CBR system. In Section 2, the
structure of BN-Creek and its retrieve process are presented. Section 3 investi-
gates two examples from two application domains: a food failure domain and a
drilling process domain. Section 4 discusses and concludes the paper.

2 BN-Creek

BN-Creek is a knowledge-intensive system to address problems in uncertain do-
mains. The knowledge representation in BN-Creek is a combination of semantic
network, Bayesian network and case-based reasoning modules which all together
create the knowledge model of the system with a three-layer structure. The se-
mantic layer consists of the ontology nodes (each node refers to a concept in the
knowledge domain) which are connected by structural relations, i.e., "subclass-
of", "part-of", etc. This layer enables the system to conduct semantic inference
through various forms of inheritance. The Bayesian layer consists of the nodes
that are connected with the causal relations. The Bayesian layer is strongly
integrated with the semantic layer in the form of several separated Bayesian
networks. This layer assists the retrieve process to find the potential causes and
the most similar cases in addition to generating the causal explanations. There is
an individual module named Mirror Bayesian network which interacts with the
Bayesian layer and is responsible for the Bayesian inference computational issues.
The Mirror Bayesian network is created to keep the implementation complexity
low. It gathers a copy of all the small Bayesian networks that are integrated
with the semantic network in a computational module. The case base layer is
connected to the upper layers through the cases features (features are nodes of
the Bayesian or the semantic networks) each possessing a relevance factor (a
number that shows the importance of a feature for a stored case [2]).



Fig. 1 illustrates the graphical representation of the system structure. Each
box presents one module of the BN-Creek, and the inner boxes make up the outer
ones. A set of minor modules form a major module, i.e., "semantic network",
"Bayesian network" and "case base" modules form the "general domain knowl-
edge model"; and the "general domain knowledge model" and mirror Bayesian
network form the BN-Creek system. The solid arrows show the direction of con-
necting nodes of each module and the dotted arrow indicates the information
flow between the "Bayesian network" and the "mirror Bayesian network".

Fig. 1. The graphical representation of BN-Creek.

2.1 The retrieve process

In this section, the retrieve process of BN-Creek system is described. The retriev-
ing process in BN-Creek has three phases, i.e., the standard case preparation, the
relation strength adjustments and the similarity assessment. The first two phases
are the preprocess for the similarity assessment phase. Algorithm1 describes the
retrieve process in a stepwise manner.

Fig. 2. The left side represents a raw case description and the right side represents the
standard case description.

For more clarification, a run-through example from a food failure domain is
given. The domain description and details can be found in the "Experiments and



results" section. Suppose a customer ordered a "chicken fried steak and cream
gravy" dish. He receives his order and finds it "dried and juiceless" and "smelly"
and reports the problem to the chef. The chef employs BN-Creek to find the
problems which led to this failed dish to prevent repeating the same mistake in
the future.

The standard case preparation phase of the retrieve process is triggered by
the creation of a raw case (knowledge about a concrete problem situation which
consists of a set of relations and features [2]). In the running example, the chef
enters the dish ingredients and the reported observations (represented as symp-
toms) as a raw input case description and calls it "chicken fried steak and cream
gravy (case 6)", illustrated on the left side of Fig. 2.

Fig. 3. Part of the Bayesian beliefs before and after applying the symptoms to the
network.

The system extracts the symptoms from the raw case description, i.e., "dried
and juiceless" and "smelly food" and applies them to the Bayesian network.
Afterwards, it updates the Bayesian network beliefs to obtain the posterior dis-
tribution (Algorithm 1, lines 1 and 2).

p(θ|symptoms) ∝ p(symptoms|θ)× p(θ) (1)

The posterior distribution (p(θ|symptoms)) is obtained by Eq. 1. θ, p(θ) and
p(symptoms|θ) stand for the parameter of distribution, prior distribution and
the likelihood of the observations, respectively. The left and the right sides of
Fig. 3 show parts of the prior and posterior beliefs of the Bayesian network,
respectively.

BN-Creek considers the network posterior distribution and extracts the causal
chain behind any of the applied symptoms. In the given example, the causal
chains which lead to the observed symptoms are as follows: "little oil" causes
"dried and juiceless dish"; "long cooked chicken" causes "dried and juiceless
dish"; "little milk" causes "dried and juiceless dish"; "much flour" causes "dried
and juiceless dish" and "little garlic" causes "smelly food".

The case description is modified based on the extracted causal chain concepts
and forms what is referred to as a standard case description, so, "ok chicken 0.5"



Algorithm 1: Retrieve in BN-Creek
Input : An input raw case.
Output: A sorted list of retrieved failure cases and graphical causal explanations

1 Extract the symptoms of the input case from its case description.
2 Compute the Bayesian layer posterior distribution given the extracted symptoms.
3 Extract the causal chains that cause the case symptoms.
4 Modify the raw input case by adding the causal chain concepts to the case description.
5 Adjust the updated Bayesian beliefs to the knowledge model causal strengths.
6 while not all the case base is tested do
7 Extract one case from case base.
8 Compute the explanation strength between any pair of input and retrieved case findings.
9 Compute the similarity between input and retrieved case.

10 end
11 List the matched cases.
12 Generate a graphical causal explanation for the input case.

becomes "LC chicken 0.9"; LC stands for long cooked (see the right side of Fig. 2
and Algorithm1, lines 3 and 4).

The strength adjustment phase extracts the causal relations strength utiliz-
ing the posterior distribution of the Bayesian module. The causal strengths, as
opposed to the others which are fixed, are adjusted dynamically corresponding
to any new case. Fig. 3 shows the Bayesian beliefs before and after applying the
"smelly food" as a symptom to the network. The beliefs of the concepts such as
"little garlic" are changed from 0.7 to 0.71 (Algorithm1, line 5).

The similarity assessment phase follows an "explanation engine" (Fig. 4) with
an Activate-Explain-Focus cycle [2]. Activate finds the directly matched findings
between input and retrieved cases then the Explain tries to account for the not
directly matched findings of the input and retrieved cases. Focus applies the
preferences or external constraints to adjust the ranking of the cases.

Fig. 4. The retrieve explanation cycle.

BN-Creek considers each of the case base members at the time and utilizes
the Dijkstra’s Algorithm to extract all possible paths in the knowledge model
that represent relation sequences between any findings from the testing case (fi)
and all the findings from the retrieved case (fj). Consider case 7 (see the case
description in Fig. 7) as a retrieved case and the findings "LC chicken" and "LC
shrimp" from case 6 (input case) and case 7. The extracted paths between the two
findings are displayed in Fig. 5. The different causal strengths reveal the effect
of Bayesian analysis which, in contrast to the fixed strength in previous system,
computes the posterior beliefs (causal strengths) based on the prior beliefs(from
the expert) and the observed symptoms of any particular input case.



Fig. 5. All possible Paths between two findings from case 6 and case 7 namely, "LC
chicken" and "LC shrimp".

To explain the similarity strength between any coupled features, Eq. 2 is
employed. To compute the explanation strength(fi, fj), the strength of any path
between (fi) and (fj) is computed by multiplying its R relation strengths, then
all the P path strengths are multiplied, so, the explanation strengths between
"LC chicken" and "LC shrimp" is approximately 0.96 (see Fig. 5 for possible
paths between "LC chicken" and "LC shrimp"). For the situations where the
paired features are the same (exact matched features), the explanation strength
is considered as 1.

explanation strength(fi, fj) = 1−
∏P
p=1(1−

∏R
r=1 relationstrengthrp) (2)

sim(CIN , CRE) =
∑n

i=1

∑m
j=1 explanationstrength(fi,fj)∗relevancefactorfj∑n

i=1

∑m
j=1 β(explanationstrength(fi,fj))∗relevancefactorfj

(3)

The similarity between input case (CIN ) and the retrieved case (CRE) is com-
puted by summing up all the multiplication of explanation strength of (fi, fj)
with relevance factor of fj divided by the summation of relevance factor of fj
multiplied by β (explanation strength(fi, fj)). The function named β (explana-
tion strength(fi, fj)) is a binary function which is equal to one when explanation
strength(fi, fj) is not zero. Number of findings in input and retrieved cases are
shown by ’m’ and ’n’.

The system computes the similarity between the input case and all the cases
from the case base and lists the matching results, displayed on the left side of
Table 1 (Algorithm1 line 6 to 10).

Fig. 6. An example of the graphical causal explanation in the food failure domain.
2.2 The explanations

There are two uses of explanations in knowledge-based systems. One is as the
explanation that a system may produce for the benefit of the user, e.g., to ex-



plain its reasoning steps or to justify why a particular conclusion was drawn. The
other is as the internal explanation that a system may construct for itself during
problem solving. BN-Creek provides internal explanations for solving the prob-
lems which are called an "explanation strength". A graphical causal explanation
is generated to show the extracted causal chains behind the observed symptoms
for the benefit of the user. Fig. 6 demonstrates the graphical causal explanation
for "chicken fried steak and cream gravy (case 6)". The explanation is the re-
sult of Bayesian analysis given the two observations, i.e., "dried and juiceless"
and "smelly food". BN-Creek considers the case features and browses into the
network to find the related causal chain. The left part of Fig. 6 explains the
seven possible causes for "dried and juiceless food" in which the "LC chicken",
"little oil", "little milk" and "much flour" are related to the case 6 with causal
strengths of 0.7, 0.5,0.64 and 0.73, respectively. The causal strengths demon-
strate that "LC chicken" and "much flour" have most effect on causing the
"dried and juiceless food". The right part of Fig. 6 shows two causal chains for
"smelly food", i.e., "little garlic" causes "not enough marinated food" causes
"smelly food" and "little onion" causes "not enough marinated food" causes
"smelly food" with causal strengths of 0.32 and 0.28, respectively. The gener-
ated Explanation in more uncertain domains like oil well drilling process, play
a significant role in computing the similarity (by providing explanation paths)
and clarifies the proposed solution for the expert.

Fig. 7. The six food failure cases description.



3 Experiments and results
In this section first the employed evaluation methodology is introduced then
the system is tested by studying two examples from two different application
domains: "food failure domain" and "drilling process domain".

3.1 System evaluation methodology

To evaluate the effects of the Bayesian analysis in similarity assessment, a test
system is implemented. This system is based on the BN-Creek architecture, but
with all the capabilities that stem from the Bayesian analysis removed. The
resultant system is a simplified version of TrollCreek[2].

Without Bayesian inference, the simplified TrollCreek is not able to extract
the potential failure causal chains of an input case. Then, the raw input case
from the user is considered as the finalized case description. Moreover, the system
is not able to adjust the causal strength dynamically and uses the predefined
causal strength for all parts of the knowledge model.

In each application domain, the given example results are also manually
predicted by a domain expert, and the results of BN-Creek and TrollCreek are
evaluated by comparing with the expert. The system with closer results to the
expert’s prediction is considered as the more efficient system.

BN-Creek
Input Matched
case6 88% case7
case6 56% case5
case6 47% case3
case6 37% case2
case6 22% case9
case6 15% case8
case6 15% case11
case6 14% case4
case6 13% case1
case6 11% case10

TrollCreek
Input Matched
case6 82% case7
case6 58% case5
case6 29% case9
case6 23% case11
case6 20% case3
case6 15% case2
case6 15% case4
case6 10% case1
case6 4% case8
case6 4% case10

Expert
Input Matched
case6 strong case7,5,3,2
case6 medium case9,4
case6 weak case1,8,10,11

Table 1. The left side illustrates the results of BN-Creek, the middle is the results of
the simplified TrollCreek and the right side is the expert’s predicted results.

3.2 Food failure domain

The main type of application domains for the presented system is uncertain
domains, and using this system for more certain domains such as "food failure
domain" in some cases doesn’t make sense. However, on account of the simple
nature of "food failure domain", which leads to a better understanding of the
system process, an example from this domain is presented.

A food recipe failure ontology inspired by Taaable[14] is utilized with some
modifications that are made to fit the ontology to BN-Creek structure, i.e.,
adding causal relations. The causal relations present the failures of using an
appropriate amount of ingredients. Fifteen recipes are examined and simplified
to the basic elements (e.g., Gouda cheese simplified to cheese) and eleven failure
cases are created.



Evaluating the results To analyze the BN-Creek efficiency the results of one
given example on the three different systems,i.e., BN-Creek, simplified Troll-
Creek and the expert are considered and presented in Table 1.

The results of running BN-Creek with "chicken fried steak and cream gravy
(case 6)" as an input case (the run through example from section 2) is displayed
on the left side of Table 1.

The simplified TrollCreek is run with the "chicken fried steak and cream
gravy (case 6)" as its input case as well. The obtained results are listed in the
middle part of Table 1.

Fig. 8. The six drilling cases description.

Due to the simplicity of the domain, the analysis of the results predicted
by the expert is as follows. Consider the "chicken fried steak and cream gravy
(case 6)" as an input case. Cases 7, 5, 3 and 2 have the same observations (see
Fig. 7) as case 6, and are expected to be the most similar cases. Case 7 has al-
most the same case description as case 6 and the only difference is "long cooked
chicken" that is replaced by "long cooked shrimp", so it is the most similar case to
it. Cases 5, 3 and 2 are sorted with the same logic. Cases 4 and 9 hold one shared
observation with case 6, and considering their causal chain they are expected to
be the second best similar cases. Cases 1, 8, 10, 11 don’t carry any observation
in common with case 6 and are expected to be the weakest similar cases. Then,
the similarity degree between case 6 and the retrieved cases can be distributed in
3 levels. Very similar cases which fill the first four ranks, medium similar cases
which fill the 5th and the 6th ranks and the weak similar cases which fill the rest
of the positions. The right side of Table 1 displays the expected retrieved cases.

By comparing the BN-Creek and the Simplified TrollCreek results with the
expected results, BN-Creek detected the very similar cases correctly whereas
the simplified TrollCreek detected cases 9 and 11 erroneously. For the medium
and weak similar cases, BN-Creek categorized cases 4 and 8 incorrectly and the
simplified TrollCreek categorized case 4, 11 and 2 wrong.



3.3 Drilling process

The oil and gas domain is an uncertain domain with a weak theory in which
implementing ad hoc solutions frequently leads to a reemergence of the problem
and repetition of the cycle. These types of domains are the main application
domains addressed by BN-Creek.

A drilling process ontology created by Prof Paal Skalle [15] together with
seven failure cases, is utilized. Fig. 8 shows the cases descriptions. A case named
"Wellbore clean4 (case 6)" is randomly considered as an input case. The retrieved
cases are listed on the left side of Table 2.
Evaluating the results The results of running BN-Creek with "Wellbore
clean4 (case 6)" as an input case is displayed on the left side of Table 2.

The simplified TrollCreek is run with the same input case, i.e., "Wellbore
clean4 (case 6)" and the retrieved cases are listed in the middle part of Table 2.

The results of the two systems ( BN-Creek and simplified TrollCreek) are
compared with the predicted results by expert [15] and listed on the right side
of Table 2.

Based on the expert’s prediction, cases 3, 7, 4, 5, 1 and 2 are the most similar
ones to "Wellbore clean4 (case 6)", respectively. By comparing the results of BN-
Creek and simplified TrollCreek with the expected results, BN-Creek revealed
case 4 stronger than case 7, which is wrong, but the rest of the similarity order
is captured correctly. The simplified TrollCreek recognized case 4 and 5 to be
stronger than cases 3 and 7 which is also wrong.

BN-Creek
Input Matched
case6 79% case3
case6 78% case4
case6 68% case7
case6 64% case5
case6 63% case1
case6 61% case2

TrollCreek
Input Matched
case6 62% case4
case6 54% case3
case6 53% case5
case6 48% case7
case6 48% case1
case6 46% case2

Expert
Input Matched
case6 case3
case6 case7
case6 case4
case6 case5
case6 case1
case6 case2

Table 2. The left side shows the results of BN-Creek, the middle is the results of the
simplified TrollCreek and the right side is the expert predicted results.

4 Discussion and conclusion

In this section, the obtained results from the two utilized examples are analyzed
and the advantages and weaknesses of the BN-Creek are addressed.

Case 11, from the food domain example, has almost the same ingredients as
the input case (case 6) and their differences originated from "LC chicken" which
is replaced by "ok shrimp" in case 11 and their symptoms which are not the
same. Case 11 is categorised as a very similar case by the simplified TrollCreek
system while, based on the expert’s prediction, it is the least similar case to
case 6. This problem stems from similarity assessment mechanism in simplified
TrollCreek which incorporates the raw case descriptions without considering the
effect of different symptoms on cases (e.g. a peppery sandwich is more similar to
a peppery steak than to a salty sandwich) which leads to a wrong categorising
of the cases such as case 11. Whereas BN-Creek, in its three phases, injects the



effect of Bayesian analysis into the case description and similarity assessment
process. So it is eligible to incorporate the effect of symptoms in the similarity
assessment in such a way that after passing the first two phases, a modified
case description, with the adjusted relevance factors is produced as an input for
the third phase. The third phase computes the similarity based on the modified
causal strength of the ontology which leads to a correct categorisation of the
instances such as case 11.

Case 3 from "drilling process domain" doesn’t have any feature in common
with the input case, i.e., "Wellbore clean4 (case 6)". Case 3 is categorised as the
second best case by the simplified TrollCreek system while, based on the ex-
pert’s prediction, it is the most similar case to case 6. The problem with the
simplified TrollCreek is originated in its similarity assessment method that uses
the static relation strengths to compute the similarity which leads to a wrong
categorising of the cases such as case 3. Whereas BN-Creek, in its third phase,
adjusts the relations strengths based on the BN posterior distribution dynami-
cally which leads to capturing the similarity between instances like Cases 6 and
3 correctly. Fig. 9 demonstrates the differences between the matching degrees of
three sampled features from Cases 6 and 3.

Fig. 9. The left side displays the indirectly matched degrees between two features from
the input and retrieved cases resulted from BN-Creek and the right side is the same
results from the TrollCreek system.

BN-Creek in both of the examples didn’t manage to list all the similarity
orders correctly and the problem mostly relates to the medium similar cases. It
is speculated that this weakness stems from the imprecise prior distribution of
the Bayesian beliefs which spreads to the modified relevance factors as well and
decreases the accuracy of the system.

BN-Creek showed a higher performance than the simplified TrollCreek, base
on two application domains test results. This indicates the Bayesian analysis
efficiency for similarity assessment, independent from the application domain.

5 Future studies

The next two future steps for this research will focus on learning methods and
temporal reasoning. To increase the accuracy of the similarity assessment, ma-
chine learning methods would be employed to minimise the error of Bayesian
prior distribution and relevance factors. In application domains with large knowl-
edge models, the causal chains length are too long which leads to a high computa-
tional complexity. Some primary studies are conducting to employ the temporal
reasoning and use the time sequence of the causal relations to provide a threshold
for the causal chains length[13].
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